Selasa, 26 April 2011

TRANSGENIK

BAB I
PENDAHULUAN

1.1 Latar Belakang
Sejak zaman dahulu nenek moyang kita telah mengenal beranekaragam makhluk hidup. Beraneka ragamnya makhluk hidup memberikan kemungkinan bagi manusia untuk memilih apa yang ingin dilakukan. Keanekaragaman ini dapat kita lihat pada salah satu jenis makhluk hidup, misalnya padi. Kita mengenal berbagai macam padi yang berbeda-beda sifatnya. Ada padi yang batangnya panjang dan ada pula yang batangnya pendek, ada padi yang berasnya pulen dan ada pula yang tidak pulen, serta ada padi yang umur panennya lama dan ada yang umur panennya tidak lama. Padi ada dalam kehidupan kita sehari-hari baik secara langsung maupun tidak langsung, sebagian dari manusia telah banyak berhubungan dengan hasil penggunaan teknologi DNA rekombinan.
Tidak puas dengan memilih kombinasi sifat yang sudah ada di alam, maka manusia berusaha untuk membuat kombinasi baru dari sifat-sifat yang diinginkan. Cara klasik yang dapat dilakukan untuk mendapatkan kombinasi sifat yang diinginkan adalah dengan melakukan persilangan (breeding). Para ahli telah melakukan persilangan-persilangan untuk menghasilkan berbagai jenis tanaman yang memiliki kombinasi sifat-sifat unggul.
Dengan ditemukannya DNA sebagai bahan gen, manusiapun berupaya untuk mendapatkan kombinasi sifat-sifat baru suatu makhluk hidup dengan cara melakukan perubahan langsung pada DNA genomnya. Usaha untuk mengubah DNA genom secara langsung disebut sebagai rekayasa genetika atau genetic engineering. Dalam upaya melakukan rekayasa genetika, manusia menggunakan teknologi DNA rekombinan.
Teknologi DNA rekombinan telah banyak memberikan manfaat bagi perkembangan ilmu pengetahuan maupun bagi kehidupan manusia dalam kehidupan sehari-hari. Contohnya adalah tanaman transgenic yang pernah ramai dibicarakan oleh orang-orang. Makalah ini mengupas tentang bioteknologi khususnya di bidang teknologi DNA rekombinan pada tanaman transgenic.
1.2 Rumusan Masalah
Berdasarkan latar belakang di atas, maka rumusan masalah yang akan dibahas adalah sebagai berikut:
1) Bagaimana pembuatan tanaman transgenik?
2) Contoh tanaman transgenik?
3) Bagaimana pengaruh tanaman transgenic dibeberapa aspek kehidupan?
1.3 Metode Pembelajaran
Adapun metode pembelajaran yang dapa digunakan dalam proses kegiatan belajar mengajar di sekolah adalah metode ceramah. Media pengajaran yang dapat digunakan seperti multimedia (perangkat infocus) atau dengan menggunakan media gambar.








BAB II
PEMBAHASAN

2.1 Pembuatan Tanaman Transgenik
Tanaman transgenik adalah tanaman yang telah disisipi atau memiliki gen asing dari spesies tanaman yang berbeda atau makhluk hidup lainnya. Penggabungan gen asing ini bertujuan untuk mendapatkan tanaman dengan sifat-sifat yang diinginkan, misalnya pembuatan tanaman yang tahan suhu tinggi, suhu rendah, kekeringan, resisten terhadap organisme pengganggu tanaman, serta kuantitas dan kualitas yang lebih tinggi dari tanaman alami.
Sejarah penemuan tanaman transgenik dimulai pada tahun 1977 ketika bakteri Agrobacterium tumefaciens diketahui dapat mentransfer DNA atau gen yang dimilikinya ke dalam tanaman. Pada tahun 1983, tanaman transgenik pertama, yaitu bunga matahari yang disisipi gen dari buncis (Phaseolus vulgaris) telah berhasil dikembangkan oleh manusia. Sejak saat itu, pengembangan tanaman transgenik untuk kebutuhan komersial dan peningkatan tanaman terus dilakukan manusia. Tanaman transgenik pertama yang berhasil diproduksi dan dipasarkan adalah jagung dan kedelai. Keduanya diluncurkan pertama kali di Amerika Serikat pada tahun 1996. Pada tahun 2004, lebih dari 80 juta hektar tanah pertanian di dunia telah ditanami dengan tanaman transgenic, misalnya kapas transgenic, kedelai transgenic dan lain-lain.
Untuk membuat suatu tanaman transgenic, maka dapat dilakukan dengan langkah-langkah sebagai berikut:
1) Melakukan identifikasi atau pencarian gen yang akan menghasilkan sifat tertentu (sifat yang diinginkan). Gen yang diinginkan dapat diambil dari tanaman lain, hewan, cendawan, atau bakteri.
2) Setelah gen yang diinginkan didapat maka dilakukan perbanyakan gen yang disebut dengan istilah kloning gen. Pada tahapan kloning gen, DNA asing akan dimasukkan ke dalam vektor kloning (agen pembawa DNA), contohnya plasmid (DNA yang digunakan untuk transfer gen). Kemudian, vektor kloning akan dimasukkan ke dalam bakteri sehingga DNA dapat diperbanyak seiring dengan perkembangbiakan bakteri tersebut.
3) Apabila gen yang diinginkan telah diperbanyak dalam jumlah yang cukup maka akan dilakukan transfer gen asing tersebut ke dalam sel tumbuhan yang berasal dari bagian tertentu, salah satunya adalah bagian daun. Transfer gen ini dapat dilakukan dengan beberapa metode, yaitu metode senjata gen, metode transformasi DNA yang diperantarai bakteri Agrobacterium tumefaciens, dan elektroporasi (metode transfer DNA dengan bantuan listrik).
Metode senjata gen atau penembakan mikro-proyektif. Metode ini sering digunakan pada spesies jagung dan padi. Untuk melakukannya, digunakan senjata yang dapat menembakkan mikro-proyektil berkecepatan tinggi ke dalam sel tanaman. Mikro-proyektil tersebut akan mengantarkan DNA untuk masuk ke dalam sel tanaman. Penggunaan senjata gen memberikan hasil yang bersih dan aman, meskipun ada kemungkinan terjadi kerusakan sel selama penembakan berlangsung.
Metode transformasi yang diperantarai oleh Agrobacterium tumefaciens. Bakteri Agrobacterium tumefaciens dapat menginfeksi tanaman secara alami karena memiliki plasmid Ti, suatu vektor (pembawa DNA) untuk menyisipkan gen asing. Di dalam plasmid Ti terdapat gen yang menyandikan sifat virulensi untuk menyebabkan penyakit tanaman tertentu. Gen asing yang ingin dimasukkan ke dalam tanaman dapat disisipkan di dalam plasmid Ti. Selanjutnya, A. tumefaciens secara langsung dapat memindahkan gen pada plasmid tersebut ke dalam genom (DNA) tanaman. Setelah DNA asing menyatu dengan DNA tanaman maka sifat-sifat yang diinginkan dapat diekspresikan tumbuhan.
Metode elektroporasi. Pada metode elektroporasi ini, sel tanaman yang akan menerima gen asing harus mengalami pelepasan dinding sel hingga menjadi protoplas (sel yang kehilangan dinding sel). Selanjutnya sel diberi kejutan listrik dengan voltase tinggi untuk membuka pori-pori membran sel tanaman sehingga DNA asing dapat masuk ke dalam sel dan bersatu (terintegrasi) dengan DNA kromosom tanaman. Kemudian, dilakukan proses pengembalian dinding sel tanaman.
4) Setelah proses transfer DNA selesai, dilakukan seleksi sel daun untuk mendapatkan sel yang berhasil disisipi gen asing. Hasil seleksi ditumbuhkan menjadi kalus (sekumpulan sel yang belum terdiferensiasi) hingga nantinya terbentuk akar dan tunas. Apabila telah terbentuk tanaman muda (plantlet), maka dapat dilakukan pemindahan ke tanah dan sifat baru tanaman dapat diamati.
2.2 Contoh Tanaman Transgenik
Beberapa contoh tanaman transgenik yang dikembangkan di dunia tertera pada tabel di bawah ini.
Jenis tanaman Sifat yang telah dimodifikasi Modifikasi Foto
Padi Mengandung provitamin A (beta-karotena) dalam jumlah tinggi. Gen dari tumbuhan narsis, jagung, dan bakteri Erwinia disisipkan pada kromosom padi.
Jagung, kapas, kentang Tahan (resisten) terhadap hama. Gen toksin Bt dari bakteri Bacillus thuringiensis ditransfer ke dalam tanaman.
Tembakau Tahan terhadap cuaca dingin. Gen untuk mengatur pertahanan pada cuaca dingin dari tanaman Arabidopsis thaliana atau dari sianobakteri (Anacyctis nidulans) dimasukkan ke tembakau.
Tomat Proses pelunakan tomat diperlambat sehingga tomat dapat disimpan lebih lama dan tidak cepat busuk. Gen khusus yang disebut antisenescens ditransfer ke dalam tomat untuk menghambat enzim poligalakturonase (enzim yang mempercepat kerusakan dinding sel tomat).[16] Selain menggunakan gen dari bakteri E. coli, tomat transgenik juga dibuat dengan memodifikasi gen yang telah dimiliknya secara alami.
Kedelai Mengandung asam oleat tinggi dan tahan terhadap herbisida glifosat. Dengan demikian, ketika disemprot dengan herbisida tersebut, hanya gulma di sekitar kedelai yang akan mati. Gen resisten herbisida dari bakteri Agrobacterium galur CP4 dimasukkan ke kedelai dan juga digunakan teknologi molekular untuk meningkatkan pembentukan asam oleat.

Ubi jalar Tahan terhadap penyakit tanaman yang disebabkan virus.
Gen dari selubung virus tertentu ditransfer ke dalam ubi jalar dan dibantu dengan teknologi peredaman gen.

Kanola Menghasilkan minyak kanola yang mengandung asam laurat tinggi sehingga lebih menguntungkan untuk kesehatan dan secara ekonomi. Selain itu, kanola transgenik yang disisipi gen penyandi vitamin E juga telah ditemukan. Gen FatB dari Umbellularia californica ditransfer ke dalam tanaman kanola untuk meningkatkan kandungan asam laurat.

Pepaya Resisten terhadap virus tertentu, contohnya Papaya ringspot virus (PRSV). Gen yang menyandikan selubung virus PRSV ditransfer ke dalam tanaman pepaya.

Melon Buah tidak cepat busuk. Gen baru dari bakteriofag T3 diambil untuk mengurangi pembentukan hormon etilen (hormon yang berperan dalam pematangan buah) di melon.

Bit gula Tahan terhadap herbisida glifosat dan glufosinat.
Gen dari bakteri Agrobacterium galur CP4 dan cendawan Streptomyces viridochromogenes ditransfer ke dalam tanaman bit gula.

Prem (plum) Resisten terhadap infeksi virus cacar prem (plum pox virus). Gen selubung virus cacar prem ditransfer ke tanaman prem.

Gandum Resisten terhadap peyakit hawar yang disebabkan cendawan Fusarium.
Gen penyandi enzim kitinase (pemecah dinding sel cendawan) dari jelai (barley) ditransfer ke tanaman gandum.


2.3 Dampak yang Ditimbulkan Tanaman Transgenik
Perkembangan tanaman transgenik dapat diterima dengan baik oleh beberapa negara. Namun, ada juga beberapa negara yang menolak tanaman transgenik karena kekhawatiran terhadap potensi gangguan kesehatan konsumen dan kerusakan lingkungan.
Dampak positif yang ditimbulkan di beberapa aspek kehidupan antara lain:
1) Menghasilkan jenis tanaman baru yang tahan terhadap kondisi pertumbuhan yang keras seperti lahan kering, lahan yang berkadar garam tinggi dan suhu lingkungan yang ekstrim. Bila berhasil dilakukan modifikasi genetika pada tanaman, maka dihasilkan asam lemak linoleat yang tinggi yang menyebabkan mampu hidup dengan baik pada suhu dingin dan beku
2) Toleran terhadap herbisida yang ramah lingkungan yang dapat mengganggu gulma, tetapi tidak mengganggu tanaman itu sendiri. Contoh kedelai yang tahan herbisida dapat mempertahankan kondisi bebas gulamnya hanya dengan separuh dari jumlah herbisida yang digunakan secara normal
3) Meningkatkan sifat-sifat fungsional yang dikehendaki, seperti mereduksi sifat atau daya alergi (toksisitas), menghambat pematangan buah, kadar pati yang lebih tinggi serta daya simpan yang lebih panjang. Misalnya, kentang yang telah mengalami teknologi rDNA, kadar patinya menjadi lebih tinggi sehingga akan menyerap sedikit minyak bila goreng (deep fried). Dengan demikian akan menghasilkan kentang goreng dengan kadar lemak yang lebih rendah.
4) Sifat-sifat yang lebih dikehendaki, misalnya kadar protein atau lemak dan meningkatnya kadar fitokimia dan kandungan gizi. Kekurangan gizi yang nyata adalah kekurangan vitamin A, yodium, besi dan zink. Untuk menanggulanginya, dapat dilakukan dengan menyisipkan den khusus yang mampu meningkatkan senyata-senyawa tersebut dalam tanaman. Contohnya telah dikembangkan beras yang memiliki kandungan betakaroten dan besi sehingga mampu menolong orang yang mengalami defisiensi senyawa tersebut dan mencegah kekurangan gizi pada masyarakat.

Dampak negatif yang ditimbulkan tanaman transgenik, antara lain:
1) Kesehatan manusia
Dari segi kesehatan, tanaman ini dianggap dapat menjadi alergen (senyawa yang menimbulkan alergi) baru bagi manusia. Untuk menanggapi hal tersebut, para peneliti menyatakan bahwa sebelum suatu tanaman transgenik diproduksi secara massal, akan dilakukan berbagai pengujian potensi alergi dan toksisitas untuk menjamin agar produk tanaman tersebut aman untuk dikonsumsi. Apabila berpotensi menyebabkan alergi, maka tanaman transgenik tersebut tidak akan dikembangkan lebih lanjut. Kekhawatiran lain yang timbul di masyarakat adalah kemungkinan gen asing pada tanaman transgenik dapat berpindah ke tubuh manusia apabila dikonsumsi. Pendapat tersebut dinilai berlebihan oleh para ilmuwan karena makanan yang berasal dari tanaman transgenik akan terurai menjadi unsur-unsur yang dapat diserap tubuh sehingga tidak akan ada gen aktif. Untuk memberikan kebebasan kepada masyarakat dalam memilih produk transgenik atau produk alami, berbagai negara, khususnya negara-negara Eropa, telah melakukan pemberian label terhadap produk transgenik. Pelabelan tersebut juga bertujuan untuk memberikan informasi kepada konsumen sebelum mengkonsumsi hasil tanaman transgenik.
2) Lingkungan
Penolakan terhadap budidaya tanaman transgenik muncul karena dianggap berpotensi mengganggu keseimbangan ekosistem. Salah satunya adalah terbentuknya hama atau gulma super (yang lebih kuat atau resisten) di lingkungan. Kekhawatiran ini terlihat jelas pada perdebatan mengenai jagung Bt yang memiliki racun Bt untuk membunuh hama lepidoptera berupa ngengat dan kupu-kupu tertentu. Ada kemungkinan hama yang ingin dibunuh dapat beradaptasi dengan tanaman tersebut dan menjadi hama yang lebih tahan atau resisten terhadap racun Bt. Selain itu, kupu-kupu Monarch, yang bukan merupakan hama jagung, ikut terkena dampak berupa peningkatan kematian akibat memakan daun tumbuhan perdu (Asclepias) yang terkena serbuk sari dari jagung Bt. Hal lain yang berkaitan dengan isu ekologi adalah timbulnya perpindahan gen secara tidak terkendali dari tanaman transgenik ke tanaman lain di alam melalui penyerbukan (polinasi). Serbuk sari dari tanaman transgenik dapat terbawa angin dan hewan hingga menyerbuki tanaman lain. Akibatnya, dapat terbentuk tumbuhan baru dengan sifat yang tidak diharapkan dan berpotensi merugikan lingkungan.
3) Etika dan agama
Dari segi etika, pihak yang kontra dengan tanaman transgenik menganggap bahwa rekayasa atau manipulasi genetik tanaman merupakan tindakan yang tidak menghormati penciptaan Tuhan. Perubahan sifat tanaman dengan penambahan gen asing juga dianggap sebagai tindakan "bermain sebagai Tuhan" karena mengubah makhluk yang telah diciptakan-Nya. Pemikiran teologis Katolik memandang bahwa manipulasi atau rekayasa genetik merupakan suatu kemungkinan yang disediakan oleh Tuhan karena tanaman diberikan kepada manusia untuk dipelihara dan dimanfaatkan. Dalam sudut pandang agama tersebut, modifikasi genetika tanaman tidak berlawanan dengan ajaran Gereja Katolik, namun kelestarian alam juga harus diperhatikan karena merupakan tanggung jawab manusia. Dalam menanggapi isu tentang tanaman transgenik, Dewan Yuriprudensi Islam dan Badan Sertifikasi Makanan Islam di Amerika (IFANCA) menyatakan bahwa makanan dari tanaman transgenik yang ada telah dikembangkan bersifat halal dan dapat dikonsumsi oleh umat Islam. Untuk tanaman yang disisipi gen dari binatang haram, produk tanaman transgenik tersebut akan disebut Masbuh, yang berarti masih diragukan (belum diketahui) status halal atau haramnya. Sertifikasi makanan yang telah dikeluarkan oleh IFANCA juga diakui dan diterima oleh Majelis Ulama Indonesia (MUI), Majelis Ulama Islam Singapura (MUIS), Liga Muslim Dunia, Arab Saudi, dan pemerintah Malaysia. Pihak yang mendukung tanaman transgenik menganggap bahwa transfer gen dari suatu makhluk hidup ke makhluk lainnya merupakan hal yang alamiah dan biasa terjadi di alam sejak pertama kali berlangsungnya kehidupan.
4) Ekonomi global
Riset dan pengembangan tanaman transgenik membutuhkan biaya yang besar dan umumnya dilakukan oleh perusahaan-perusahaan swasta maupun pemerintah di negara maju. Untuk mengembalikan biaya investasi perusahaan dan melindungi produk hasil investasinya, tanaman transgenik yang telah diproduksi akan dipatenkan. Di dalam salah satu laporan kerja Komisi Eropa, disebutkan bahwa pemberlakuan paten pada produk transgenik dapat mengakibatkan petani kehilangan kemampuan memproduksi benih secara mandiri dan harus membeli pada produsen dari negara maju. Ketergantungan para petani terhadap produsen juga semakin meningkat dengan ditemukannya teknologi "gen bunuh diri".[5] Sebagian tanaman transgenik disisipi "gen bunuh diri" yang menyebabkan tanaman hanya bisa ditanam satu kali dan biji keturunan selanjutnya bersifat mandul (tidak dapat berkembang biak).[46] Hal ini akan menyebabkan terjadinya arus modal dari negara berkembang ke negara maju untuk pembelian bibit transgenik setiap kali akan melakukan penanaman.[5] Para petani di negara-negara dunia ketiga khawatir bila harga benih akan menjadi mahal karena pemberlakuan paten dan mekanisme "gen bunuh diri" yang dilakukan oleh produsen benih. Jika petani tersebut tidak mampu membeli benih transgenik maka kesenjangan ekonomi antara negara penghasil tanaman transgenik dan negara berkembang sebagai konsumen akan semakin melebar.














BAB III
PENUTUP

3.1 Kesimpulan
Berdasarkan uraian di atas, maka dapat ditarik beberapa kesimpulan antara lain:
1) Teknologi DNA rekombinan telah banyak memberikan manfaat bagi perkembangan ilmu pengetahuan maupun bagi kehidupan manusia dalam kehidupan sehari-hari. Contohnya adalah tanaman transgenic.
2) Tanaman transgenic merupakan tanaman yang telah disisipi atau memiliki gen asing dari spesies tanaman yang berbeda atau makhluk hidup lainnya.
3) Pembuatan tanaman transgenic dilakukan melalui langkah-langkah yaitu identifikasi gen, perbanyakan gen (cloning gen), transfer gen asing dan seleksi sel.
4) Beberapa contoh tanaman transgenic, misalnya padi, jagung, kapas dan lain-lain.
5) Namun masalah muncul ketika tanaman transgenic telah menimbukan masalah yang cukup serius di beberapa bidang kehidupan.

Tidak ada komentar:

Posting Komentar